Liquid Marbles Based on Magnetic Upconversion Nanoparticles as Magnetically and Optically Responsive Miniature Reactors for Photocatalysis and Photodynamic Therapy.
نویسندگان
چکیده
Magnetic liquid marbles have recently attracted extensive attention for various potential applications. However, conventional liquid marbles based on iron oxide nanoparticles are opaque and inadequate for photo-related applications. Herein, we report the first development of liquid marbles coated with magnetic lanthanide-doped upconversion nanoparticles (UCNPs) that can convert near-infrared light into visible light. Apart from their excellent magnetic and mechanical properties, which are attractive for repeatable tip opening and magnetically directed movements, the resultant UCNP-based liquid marbles can act as ideal miniature reactors for photodynamic therapy of cancer cells. This work opens new ways for the development of liquid marbles, and shows great promise for liquid marbles based on UCNPs to be used in a large variety of potential applications, such as photodynamic therapy for accelerated drug screening, magnetically guided controlled drug delivery and release, and multifunctional actuation.
منابع مشابه
Smart pH-responsive upconversion nanoparticles for enhanced tumor cellular internalization and near-infrared light-triggered photodynamic therapy.
A smart pH-responsive photodynamic therapy system based on upconversion nanoparticle loaded PEG coated polymeric lipid vesicles (RB-UPPLVs) was designed and prepared. These RB-UPPLVs which are promising agents for deep cancer photodynamic therapy applications can achieve enhanced tumor cellular internalization and near-infrared light-triggered photodynamic therapy.
متن کاملCatalytic liquid marbles: Ag nanowire-based miniature reactors for highly efficient degradation of methylene blue.
Ag nanowire-based catalytic liquid marbles are fabricated as miniature reactors, which demonstrate highly efficient, support-free and rate-controllable heterogeneous degradation of methylene blue, with catalytic efficiency close to 100%. Our miniature catalytic liquid marbles are essential for reactions involving highly toxic/hazardous or costly reactants, where small volume preliminary reactio...
متن کاملMagnetic and fluorescent Gd2O3:Yb3+/Ln3+ nanoparticles for simultaneous upconversion luminescence/MR dual modal imaging and NIR-induced photodynamic therapy
The development of upconversion nanoparticles (UCNs) for theranostics application is a new strategy toward the accurate diagnosis and efficient treatment of cancer. Here, magnetic and fluorescent lanthanide-doped gadolinium oxide (Gd2O3) UCNs with bright upconversion luminescence (UCL) and high longitudinal relaxivity (r1) are used for simultaneous magnetic resonance imaging (MRI)/UCL dual-moda...
متن کاملEfficient Synthesis of Benzo[b]pyrans and Knoevenagel Products Using Magnetically Separable Nano TPPA-IL-Fe3O4
A simple, efficient, and green practical approach to Knoevenagel condensation of malononitrile and different aldehydes has been developed using an ionic liquid functionalized on Fe3O4 magnetic nanoparticles as heterogeneous catalyst. This nanostructural catalyst has also been applied for the synthesis of 4H-benzo[b]pyran derivatives in water at room temperature in short reaction time. All of th...
متن کاملAmphiphilic copolymer coated upconversion nanoparticles for near-infrared light-triggered dual anticancer treatment.
The light-triggered controlled release of anticancer drugs accompanied with NIR-responsive photodynamic therapy was prepared via a self-assembly process. Firstly, Mn(2+)-doped upconversion nanoparticles (UCNPs) were coated with a mesoporous silica shell and modified with photosensitizer (Chlorin e6) and long alkyl chains. And then the NIR light-responsive amphiphilic copolymer containing 9,10-d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Angewandte Chemie
دوره 55 36 شماره
صفحات -
تاریخ انتشار 2016